geomfum.dataset package#
Submodules#
geomfum.dataset.notebook module#
Datasets for noteboos/docs.
- class geomfum.dataset.notebook.NotebooksDataset(data_dir=None, load_at_startup=False)[source]#
Bases:
object
Dataset to use within notebooks.
- Parameters:
data_dir (str) – Directory where to store/access data.
load_at_startup (bool) – Whether to (down)load files at startup.
geomfum.dataset.torch module#
Shape dataset for PyTorch.
- class geomfum.dataset.torch.PairsDataset(dataset=None, pair_mode='all', pairs_ratio=100, device=None)[source]#
Bases:
Dataset
Dataset of pairs of shapes.
- Parameters:
dataset (torch.utils.data.Dataset or list) – Preloaded dataset or list of shape data objects.
pair_mode (str, optional) – Strategy to generate pairs. Options: ‘all’, ‘random’. Default is ‘all’.
n_pairs (int, optional) – Number of random pairs to generate if pair_mode is ‘random’. Default is 100.
device (torch.device, optional) – Device to move the data to. If None, uses CUDA if available, else CPU.
- class geomfum.dataset.torch.ShapeDataset(dataset_dir, spectral=False, distances=False, correspondences=True, k=200, device=None)[source]#
Bases:
Dataset
ShapeDataset for loading and preprocessing shape data.
- Parameters:
dataset_dir (str) – Path to the directory containing the dataset. We assume the dataset directory to have a subfolder shapes, for shapes, corr, for correspondences and dist, for chaced distance matrices.
spectral (bool) – Whether to compute the spectral features.
distances (bool) – Whether to compute geodesic distance matrices. For computational reasons, these are not computed on the fly, but rather loaded from a precomputed .mat file.
k (int) – Number of eigenvectors to use for the spectral features.
device (torch.device, optional) – Device to move the data to.
Module contents#
Datasets.